# VENTRICULAR SHUNT STUDY (Tc-99m-DTPA)

### Overview

• The Ventricular Shunt Study evaluates the patency of shunts by direct injection of the radiopharmaceutical into the shunt apparatus.

#### Indications

• Evaluation of cerebral ventricular shunt patency (1-3).

#### **Examination Time**

• 1 hour or more depending on whether the shunt is patent.

#### **Patient Preparation**

• Shave the hair over the shunt reservoir.

#### **Equipment & Energy Windows**

- Gamma camera: Large field of view; may use small field of view.
- Collimator: Low energy, high resolution, parallel hole.
- Energy window: 20% window centered at 140 keV.

## Radiopharmaceutical, Dose, & Technique of Administration

- Radiopharmaceutical: Tc-99m-DTPA (diethylenetriaminepentaacetic acid) (3).
- Dose: 1 mCi (37 MBq) in a small volume, e.g. 0.1 mL or less (4).
- Technique of administration: Usually into shunt reservoir; the exact technique depends on the type of shunt (5). The injection is performed by the neurosurgeon or nuclear medicine physician (1-3).

## **Patient Position & Imaging Field**

- Patient position: Supine.
- Imaging field: Head and shunt pathway; may include neck and chest or neck, chest, and abdomen.

### **Acquisition Protocol**

- Acquire ANT images of head and entire distal length of shunt tubing immediately after injection and at 5, 10, and 20 minutes:
  - 1. Acquire each image for 1 minute.
  - 2. Expose the images so that background activity is just visible.
- Timing of delayed images, if any, will depend on the findings in the initial images. Show the images through 20 minutes to the nuclear medicine physician.

#### **Protocol Summary Diagram**



#### **Data Processing**

• None.

#### **Optional Maneuvers**

- Images in other projections: LAT images may be obtained to better define tracer position within the cranium.
- Quantitation of CSF flow: The flow of cerebrospinal fluid through the reservoir may be quantitated (4,5).
- Evaluation of other shunts: Flow in other shunt or drug delivery systems can be evaluated using the same techniques (6).

#### **Principle Radiation Emission Data - Tc-99m** (7)

• Physical half-life = 6.01 hours.

RadiationMean % per disintegrationMean energy (keV)Gamma-289.07140.5

## Dosimetry

• Dosimetry will vary greatly with the pathway of shunt tubing and degree of obstruction.

## References

- 1. James AE, DeBlanc HJ, DeLand FH, et al: Refinements in cerebrospinal fluid diversionary shunt evaluation by cisternography. <u>Am J Roentgenol</u> 115:766-773, 1972.
- 2. Gilday DL, Kellam J: In-111-DTPA evaluation of CSF diversionary shunts in children. J Nucl Med 14:920-923, 1973.
- 3. Sty JR, D'Souza BJ, Daniels D: Nuclear anatomy of diversionary central nervous system shunts in children. <u>Clin Nucl Med</u> 3:271-275, 1978.
- 4. Chervu S, Chervu LR, Vallabhajosyula B, et al: Quantitative evaluation of cerebrospinal fluid shunt flow. J Nucl Med 25:91-95, 1984.
- 5. Hidaka M, Matsumae M, Ito K, et al: Dynamic measurement of the flow rate in cerebrospinal fluid shunts in hydrocephalic patients. <u>Eur J Nucl Med</u> 28:888-893, 2001.
- 6. Schmidt E, Oates E: In-111-DTPA to evaluate the patency of an implanted intrathecal infusion pump. <u>Clin Nucl Med</u> 22:768-770, 1997.
- 7. 43-Tc-99m: <u>In</u> MIRD: Radionuclide Data and Decay Schemes, DA Weber, KF Eckerman, AT Dillman, JC Ryman, eds, Society of Nuclear Medicine, New York, 1989, pp 178-179.

Normal Findings

- Harbert J, Haddad D, McCullough D: Quantitation of cerebrospinal fluid shunt flow. <u>J Nucl Med</u> 112:379-387, 1974.
- Chervu S, Chervu LR, Vallabhajosyula B, et al: Quantitative evaluation of cerebrospinal fluid shunt flow. J Nucl Med 25:91-95, 1984.